ANOVA für unabhängige Daten

ANOVA - was ist das?

- o MW-Vergleich mehrerer Stichproben
- Erweiterung t-Test
- o Analyse des Einflusses (mehrerer) UVn auf eine AV

Einfaktorielle ANOVA

- o Nur ein Faktor (beliebig viele Stufen) → Nur ein Haupteffekt
 - Keine Interaktion
- Hypothesen:
 - H₀: alle Mittelwerte sind gleich
 - H₁: mind. zwei Gruppenmittelwerte sind verschieden

Lineares Modell

- Messwert besteht aus:
 - 1. Populationswert
 - 2. Messfehler
 - 3. Einfluss des Faktors A/B
 - 4. Interaktionseffekten

Voraussetzungen

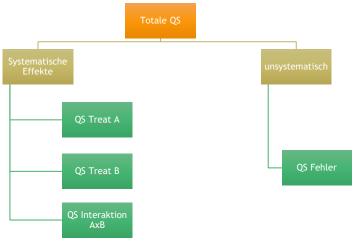
- 1. Unabhängigkeit
- 2. Normalverteilung
- 3. Intervallskalierte AV
- 4. Kategoriale UV
- 5. Varianzhomogenität

Berechnung einer ANOVA

<u>Ziel</u>: Separate Aussagen über die Wirkung jedes einzelnen Treatments (A, B, ...) und der Interaktion aus zwei und mehr Treatments (AxB, ...)

Ansatz: Analyse der Unterschiede MWs der Stufen eines Faktors bzw. Zellmittelwerten

→ Varianzanalyse


	QS	df	Var	F	Prob
A	QS_A	i-1	QSA dfA	σ2Treat σ2Fehler	
В	QS_B	j-1	QSB dfB		
AxB	QS _{AxB}	(i-1)*(j- 1)	QSAxB dfAxB		
Fehler	QS _{Fehler}	i*j*(n-1)	QSFehler dfFehler		
Total	QS _{Total}	n*i*j-1	QSTotal dfTotal		

Vorher: Berechnung des Mittelwertes aus allen Messwerten von allen Personen aus allen Stufen (sog. Grand Mean)

$$G = \frac{1}{n * i * j} * \sum A \sum B \sum A x B (xnij)$$

(auch: Summe der Stufen-/Zellmittelwerte)

Quadratsummenzerlegung

? Die ANOVA leistet das Auffinden von Unterschieden zwischen (Gruppen-)Mittelwerten durch einen Vergleich der Streuungen von Fehlern und Treatments!

Haupteffekte

- = Streuung der Daten bedingt durch die Wirkung der Faktoren
- \circ QSA = Summe der quadrierten Abweichungen aller Stufenmittelwerte $\overline{A}1$ bis $\overline{A}j$ zum Grand Mean
- O QSB = Summe der quadrierten Abweichungen aller Stufenmittelwerte $\overline{B}1$ bis $\overline{B}i$ zum Grand Mean

Interaktionseffekt

- = Spezifischer Effekt des einen Faktors auf die Messwerte innerhalb einer bestimmten Stufe des anderen Faktors
- Keine Interaktion
 - $\overline{AjBi}_{keinAxB} = \overline{Aj} + \overline{Bi} G$
- o Interaktion: Summe der Differenzen aller Messwerte zu den jeweils zu erwartenden Zellmittelwerten ohne Interaktionseffekt
 - $\sum A \sum B \sum A x B \left(xnij \overline{AjBi}_{keinAxB}\right)^2$

Fehlerstreuung e

= Summe der quadrierten Abweichungen der Messwerte innerhalb einer Zelle zum jeweiligen Zellmittelwert

Totale Quadratsumme

- = Streuung aller Daten um den Mittelwert aus allen Messwerten von allen Personen aus allen Stufen
- QSA + QSB + QSAxB + QSFehler

Populationsvarianzen

- ✓ Problem: Individuelle Messfehler der einzelnen Personen innerhalb einer Stufe werden herausgemittelt
- ✓ Lösung: Transformation der QS in Populationsvarianzen!
 - → o² = Quadratsumme/ Freiheitsgrade

Freiheitsgrade

- o df_{Total}= Freiheitsgrade der "Totalen Quadratsumme"
- o df_{TreatA}= Freiheitsgrade der Quadratsumme von Faktor A
- df_{TreatB}= Freiheitsgrade der Quadratsumme von Faktor B
- df_{TreatAxB}= Freiheitsgrade der Quadratsumme der Interaktion AxB
- o df_{Fehlrer}= Freiheitsgrade der "Fehlerquadratsumme"
- ? WICHTIG: Gleiche Anzahl Personen pro Zelle n

Amelie Amstutz Thorben Eckl Verena Heidrich

Prüfgröße F

Grundfrage: Ist die Streuung zwischen den Stufenmittelwerten eines Treatments hoch genug, damit statistisch behauptet werden kann, dass sie auf zufälligen Unterschieden (Messfehler) aufgrund der Stichprobenziehung beruhen können?

- → Beurteilung anhand einer **Prüfgröße F**
- o Wird berechnet, indem man die Treatment- durch die Fehlerstreuung teilt.
- Sie gibt darüber Aufschluss, ob eine Diskrepanz zwischen Treatment- und Fehlerstreuung ausreicht um signifikant zu sein.
- o F beträgt ungefähr 1, wenn kein systematischer Effekt des Treatments besteht.
- o Alle von 1 abweichenden Werte für F folgen einer F- Verteilung

F- Verteilung

- Aus der F-Verteilung kann die Wahrscheinlichkeit p(F) für das Auftreten beliebiger
 Prüfgrößen unter der Annahme, dass kein Effekt des Treatments (Treatmentstreuung = Fehlerstreuung) ermittelt werden.
- Ein zu unwahrscheinlicher Wert von F belegt systematische Unterschiede zwischen den Treatmentstufen

Wahrscheinlichkeit p(F)

Problem: Wie klein ist "zu unwahrscheinlich"?

- \circ $\alpha >= 0.05 \rightarrow$ statistisch nicht signifikant
- $\circ \quad \alpha < \text{0.05} \quad \Rightarrow \qquad \text{statistisch signifikant}$
- \circ α < 0.01 \rightarrow statistisch hochsignifikant

Varianzaufklärung n²

nennt uns den Anteil der Gründe für das die Unterschiede zwischen den Messwerten der AV, die man aufgrund des jeweiligen Treatments erklären kann. Nicht-aufgeklärte Varianz zeigt den Anteil der Gründe, die wir nicht kennen.

Varianzaufklärung der Treatments

- = Anteil an der Gesamtstreuung, für den das Treatment verantwortlich ist
- $\circ \quad \eta^2 = \frac{QStreat}{QStotal}$ (Treatmentstreuung "geteilt durch" totale Quadratsumme)

Nicht-aufgeklärte Varianz

=Anteil unbekannter Messfehler an der Gesamtvarianz

 $\circ \quad \eta^2_{\text{Fehler}} = \frac{\text{QSFehler}}{\text{QSStotal}} \text{ (Fehlerstreuung "geteilt durch" totale Quadratsumme)}$

ANOVA Durchführung in Excel

- 1. Das Berechnen der Zell- und Stufenmittelwerte
 - a. Am besten in einer neuen Tabelle
 - b. Excel: =MITTELWERT(Daten)
- 2. Tabelle der erwarteten Unabhängigkeitswerte bilden
 - a. Excel: =StufenmittelwertA(Spalte festsetzen(ff.Sf))+ StufenmittelwertB(Zeile festsetzen(ff. Zf))-Grand Mean(Zelle festsetzen(ff. Zzf))
- 3. Wichtige Faktoren berechnen:
 - a. n = Anzahl Personen pro Zelle
 - b. p = Stufenanzahl des Faktors A
 - c. q = Stufenanzahl des Faktors B
- 4. Quersummenbilden (Hilfstabellen) Excel:
 - a. QS(A) = StufenmittelwertA(Zf.) Grand Mean(Zzf.)
 - b. QS(B) = StufenmittelwertB(Zf.) Grand Mean(Zzf.)
 - c. QS(A*B) = Zellmittelwert(Zf.) Zellmittelwert(aus Unabhängigkeitstabelle(Zf.)
 - d. QS(Fehler) = Messwerte Zellenmittelwert(Zf.)
 - e. QS(Total)= Messwert Grandmean(Zzf.)
- 5. Zuletzt aus den Hilfstabellen die Quersummenbilden
 - = Quadratsumme(der jeweiligen Tabelle) für alle 5 Hilfstabellen
- 6. Varianzen bilden
 - a. Von VarianzA bis VarianzTotal jeweils= QS/df
- 7. Prüfgrößen berechnen F jeweils:
 - a. = Varianz/Fehlervarianz(Zzf.)
- 8. Signifikanzen berechnen p-Wert:
 - a. = 1- f.vert(F;df;df(fehler);wahr)
- 9. Varianzaufklärung jeweils:
 - a. =QS/QS(total)